题目描述
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:
输入: nums = [1], k = 1
输出: [1]
说明:
- 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
- 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。
解法:桶排序法
首先依旧使用哈希表统计频率,统计完成后,创建一个数组,将频率作为数组下标,对于出现频率不同的数字集合,存入对应的数组下标即可。
代码实现如下:
//基于桶排序求解「前 K 个高频元素」
class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
List<Integer> res = new ArrayList();
// 使用字典,统计每个元素出现的次数,元素为键,元素出现的次数为值
HashMap<Integer,Integer> map = new HashMap();
for(int num : nums){
if (map.containsKey(num)) {
map.put(num, map.get(num) + 1);
} else {
map.put(num, 1);
}
}
//桶排序
//将频率作为数组下标,对于出现频率不同的数字集合,存入对应的数组下标
List<Integer>[] list = new List[nums.length+1];
for(int key : map.keySet()){
// 获取出现的次数作为下标
int i = map.get(key);
if(list[i] == null){
list[i] = new ArrayList();
}
list[i].add(key);
}
// 倒序遍历数组获取出现顺序从大到小的排列
for(int i = list.length - 1;i >= 0 && res.size() < k;i--){
if(list[i] == null) continue;
res.addAll(list[i]);
}
return res;
}
}
复杂度分析
- 时间复杂度:O(n), n 表示数组的长度。首先,遍历一遍数组统计元素的频率,这一系列操作的时间复杂度是 O(n);桶的数量为 n + 1,所以桶排序的时间复杂度为 O(n);因此,总的时间复杂度是 O(n)。
- 空间复杂度:O(n)